
IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 11, November 2015 
 

Copyright to IJARCCE                                              DOI 10.17148/IJARCCE.2015.411101                                                   459 

A Review on Nearest Neighbour Techniques for 

Large Data 
 

Deoyani Sonawane
1
, Prof. P. M. Yawalkar

2 

Student of M.E., Computer Dept, MET BKC Adgaon, Nasik, Savitribai Phule Pune University, Maharashtra, India
1 

Professor, Computer Dept, MET BKC Adgaon, Nasik, Savitribai Phule Pune University, Maharashtra, India
2 

  
Abstract: This for many computer innovation and machine learning problems, key of good performance is large data 

set. However, in many computer innovation and machine learning algorithms consist of finding nearest neighbour 

matches in large data set is computationally expansive part. New algorithms are developed for approximate nearest 

neighbour matching and evaluation and then compare them with preceding algorithms. For matching high dimensional 

features most efficient algorithms are essential. Perhaps the Locality sensitive hashing (LSH)  technique is  best known 

hashing based nearest neighbour technique which requires multiple numbers of hash functions with the property that 

the hashes of elements that are close to each other are also likely to be close. Variants of LSH such as multi-probe LSH  

improves the high storage costs by reducing the number of hash tables, and LSH Forest adapts better to the data 

without requiring hand tuning of parameters.  for finding the best algorithm to search a particular data set, Optimal 

nearest neighbour algorithm and its parameters depend on the large data set characteristics and gives description of 

automated configuration procedure. In order to scale to very large data sets that would otherwise not fit in the memory. 

When dealing with such large data, possible solutions include performing some dimensionality reduction on the data, 

keeping the data on the disk and loading only parts of it in the main memory or distributing the data on several 

computers and using a distributed nearest neighbour search algorithm. 
 

Keywords: Nearest Neighbour Search, Big Data, Approximate Search. 
 

1. INTRODUCTION 
 

Searching most similar matches to large data also get 

called as nearest neighbour matching, and it is most 

computationally expensive part of many computer 

innovation algorithms. Having a well-planned algorithm 

for performing fast nearest neighbour matching in large 

data sets can bring speed improvements of several orders 

of magnitude to many applications. Examples of such 

problems include finding the best matches for local image 

features in large data sets, clustering local features into 

visual words using the k-means or similar algorithms, 

global image feature matching for scene recognition, 

human pose estimation, matching deformable shapes for 

object recognition.  The nearest neighbour  search problem 

is also of major importance in many other applications, 

including machine learning, document retrieval, data 

compression, bio-informatics, and data analysis. It has 

been shown that using large training sets is key to 

obtaining good real-life performance from many computer 

vision methods [8]. Today the Internet is a vast resource 

for such training data, but for large data sets the 

performance of the algorithms employed quickly becomes 

a key issue. When working with high dimensional 

features, as with most of those encountered in computer 

vision applications (image patches, local descriptors, 

global image descriptors), there is often no known nearest-

neighbour search algorithm that is exact and has 

acceptable performance. To obtain a speed improvement, 

many practical applications are forced to settle for an 

approximate search, in which not all the neighbours 

returned are exact, meaning some are approximate but 

typically still close to the exact neighbours. In practice it is  

 
 

common for approximate nearest neighbour search 

algorithms to provide more than 95 present of the correct 

neighbours and still be two or more orders of magnitude 

faster than linear search. In many cases the nearest 

neighbour search is just a part of a larger application 

containing other approximations and there is very little 

loss in performance from using approximate rather than 

exact neighbours. Hence work on the most promising 

nearest neighbour search algorithms in the literature is 

required and propose new algorithms and improvements to 

existing ones 
 

2. RELATED WORK 
 

Use of the BBD-tree, (1+ε)-approximate nearest neighbour 

queries for a set of n points in Rd  can be answered in O 

(Cd,ɛlogn ) time, where Cd,ɛ  ≤ d [1+6d /ɛ e]
 d

 is a constant 

depending only on dimension and ɛ. The data structure 

uses optimal O (dn) space and can be built in O (dn logn ) 

time. The algorithms have presented are simple (especially 

the midpoint splitting rule) and easy to implement. 

Empirical studies indicate good performance on a number 

of different point distributions. Unlike many recent results 

on approximate nearest neighbour searching, the pre-

processing is independent of ɛ,  and so different levels of 

precision can be provided from one data structure. 

Although constant factors in query time grow 

exponentially with dimension, constant factors in space 

and pre-processing time grow only linearly in d.  

We have also shown that the algorithms can be generalized 

to enumerate approximate k-nearest neighbours in 

additional O (kd logn) time. Using auxiliary data structures, 



IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 11, November 2015 
 

Copyright to IJARCCE                                              DOI 10.17148/IJARCCE.2015.411101                                                   460 

it is possible to handle point insertions and deletions in 

O(logn) time each. There are a number of important open 

problems that remain. One is that of improving constant 

factors for query time. Given the practical appeal of a data 

structure of optimal O(dn) size for large data sets, an 

important question is what lower bounds can be 

established for approximate nearest neighbor searching 

using data structures of this size. Another question is 

whether the approximate kth nearest neighbour can be 

computed in time that is polylogarithmic in both n and k 

[1].  In the context of nearest neighbour query in a high 

dimensional space with a structured data set SIFT 

descriptors in 128 dimensions in application, application 

have demonstrated that various randomisation techniques 

give enormous improvements to the performance of the 

KD-tree algorithm. The basic technique of randomisation 

is to carry out simultaneous searches using several trees, 

each one constructed using a randomly rotated (or more 

precisely, reflected) dataset. This technique can lead to an 

improvement from about 75% to 88% in successful search 

rate, or a 3 times search speed-up with the same 

performance. Best results are obtained by combining this 

technique with a rotation of the data set to align it with its 

principal axis directions using PCA and then applying 

random House holder transformations that preserve the 

PCA subspace of appropriate dimension. This leads to a 

success rate in excess of 95%. Tests with synthetic high-

dimensional data led to even more dramatic 

improvements, with up to 7-times diminished error rate 

with the NKD-tree algorithm alone [2]. Overview of 

efficient algorithms for the approximate and exact nearest 

neighbour problems is described. The goal is to pre-

process a dataset of objects (e.g., images) so that later, 

given a new query object, one can quickly return the 

dataset object that is most similar to the query. The 

problem is of significant interest in a wide variety of areas.  
 

The goal is twofold. Survey a family of nearest neighbour 

algorithms that are based on the concept of locality 

sensitive hashing. Many of these algorithms have already 

been successfully applied in a variety of practical 

scenarios. Describe a recently discovered hashing-based 

algorithm, for the case where the objects are points in the 

d-dimensional Euclidean space. As it turns out, the 

performance of this algorithm is provably near-optimal in 

the class of the locality-sensitive hashing algorithms. LSH 

family achieves a near-optimal separation between the 

collision probabilities of close and far points. An 

interesting feature of this family is that it effectively 

enables the reduction of the approximate nearest 

neighbour problem for worst-case data to the exact nearest 

neighbour problem over random (or pseudorandom) point 

configuration in low-dimensional spaces. Currently, the 

new family is mostly of theoretical interest. This is 

because the asymptotic improvement in the running time 

achieved via a better separation of collision probabilities 

makes a difference only for a relatively large number of 

input points. Nevertheless, it is quite likely that one can 

design better pseudorandom point configurations which do 

not suffer from this problem [3].Automatic algorithm 

configuration allows a user to achieve high performance in 

approximate nearest neighbour matching by calling a 

single library routine. The user need only provide an 

example of the type of dataset that will be used and the 

desired precision, and may optionally specify the 

importance of minimizing memory or build time rather 

than just search time. All remaining steps of algorithm 

selection and parameter optimization are performed 

automatically. Experiments, have found that either of two 

algorithms can have the best performance, depending on 

the dataset and desired precision. One of these is an 

algorithm have developed that combines two previous 

approaches: searching hierarchical k-means trees with a 

priority search order. The second method is to use multiple 

randomized kd trees. Have demonstrated that these can 

speed the matching of high-dimensional vectors by up to 

several orders of magnitude compared to linear search.  
 

The use of automated algorithm configuration will make it 

easy to incorporate any new algorithms that are found in 

the future to have superior performance for particular 

datasets. It can be seen that performance improves with 

the number of randomized tree sup to a certain 

point(about20randomtrees in  this case) and that increasing 

the number of random trees further leads to static or 

decreasing performance. The memory over head of using 

multiple random trees increases linearly with the number 

of trees. The hierarchical k-means tree algorithm has the 

highest performance for some datasets. However, one 

disadvantage of this algorithm is that it often has a higher 

tree-build time than the randomized kd-trees. The build 

time can be reduced significantly by doing a small number 

of iterations in the k-means clustering stage instead of 

running it until convergence [4]. Similarity search (nearest 

neighbour search) is a problem of pursuing the data items 

whose distances to a query item are the smallest from a 

large database. Various methods have been developed to 

address this problem, and recently a lot of efforts have 

been devoted to approximate search. Present a survey on 

one of the main solution called as hashing, which has been 

widely studied since the pioneering work locality sensitive 

hashing. Divide the hashing algorithms in to two main 

categories: locality sensitive hashing, which designs hash 

functions without exploring the data distribution and 

learning to hash, which learns hash functions according 

the data distribution, and review them from various 

aspects, including hash function design and distance 

measure and search scheme in the hash coding space. The 

problem of sub linear time approximate similarity search 

for a class of learned metrics is found. While randomized 

algorithms such as LSH have been employed extensively 

to mitigate the time complexity of identifying similar 

examples, particularly in vision their use has been 

restricted to generic measures for which the appropriate 

hash functions are already defined; that is, direct 

application to learned metrics was not possible [5].  The 

problem of approximate nearest neighbour (ANN) search 

for visual descriptor indexing. Most spatial partition trees, 

such as KD trees, VP trees, and so on, follow the 

hierarchical binary space partitioning framework. The key 

effort is to design different partition functions (hyper plane 

or hyper sphere) to divide the points so that 1) the data 



IJARCCE 
ISSN (Online) 2278-1021 

ISSN (Print) 2319 5940 

 
International Journal of Advanced Research in Computer and Communication Engineering 
Vol. 4, Issue 11, November 2015 
 

Copyright to IJARCCE                                              DOI 10.17148/IJARCCE.2015.411101                                                   461 

points can be well grouped to support effective NN 

candidate location and 2) the partition functions can be 

quickly evaluated to support efficient NN candidate 

location. Design a trinary-projection direction-based 

partition function. The trinary-projection direction is 

defined as a combination of a few coordinate axes with the 

weights being 1 or -1.  Pursue the projection direction 

using the widely adopted maximum variance criterion to 

guarantee good space partitioning and find fewer 

coordinate axes to guarantee efficient partition function 

evaluation. Present a coordinate-wise enumeration 

algorithm to find the principal trinary-projection direction. 

In addition, provide an extension using multiple 

randomized trees for improved performance.Present a 

novel hierarchical spatial partition tree for approximate 

nearest neighbour search. The key idea is using a trinary 

projection direction, a linear combination of a few 

coordinate axes with weights being 1 or -1, to form the 

partition hyper plane. The superiority of our approach 

comes from two aspects: 1) fast projection operation at 

internal nodes in traversing, only requiring a few 

addition/subtraction operations, which leads to high search 

efficiency, and 2) good space partition guaranteed by a 

large variance along the projection direction for 

partitioning data points, which results in high search 

accuracy. [6]Introduced a method to enable efficient 

approximate similarity search for learned metrics, and 

experiments show good results for a variety of data sets, 

representations, and base metrics. Main contribution is a 

new algorithm to construct theoretically sound locality-

sensitive hash functions for both implicit and explicit 

parameterizations of a Mahalanobis distance. For high-

dimensional data, derive simultaneous implicit updates for 

both the hash function and the learned metric. Experiments 

demonstrate our technique’s accuracy and flexibility for a 

number of large-scale search tasks. In future work, intend 

to explore online extensions to our algorithm that will 

allow similarity constraints to be processed in an 

incremental fashion, while still allowing intermittent 

queries. also interested in considering generalizations of 

our implicit hashing formulation to accommodate 

alternative kernelized metric learning algorithms, and in 

pursuing active constraint selection methods within our 

framework.[7]. Large training sets are important for many 

computer vision and machine learning problems. Finding 

nearest neighbour matches to high dimensional vectors 

representing training data is most computationally 

expensive. Thus a new algorithm is proposed for 

approximate nearest neighbour matching and is evaluated 

and compared it with previous algorithms. For matching 

high dimensional features, two algorithms are most 

efficient: the randomized k-d forest and a new algorithm 

proposed the priority search k-means tree. Also a new 

algorithm is proposed for matching binary features by 

searching multiple hierarchical clustering trees. In order to 

scale to very large data sets,  distributed nearest neighbour 

matching framework is proposed that can be used with any 

of the algorithms described in the paper. All this research 

has been released as an open source library called Fast 

library for approximate nearest neighbours (FLANN). The 

problem of fast nearest neighbour search in high 

dimensional spaces is addressed a core problem in many 

computer vision and machine learning algorithms and 

which is the most computationally expensive part of these 

algorithms. Present and compare the algorithm have found 

to work best at fast approximate search in high 

dimensional spaces: the randomized k-d trees and a newly 

introduced algorithm, the priority search k-means tree. [8] 
 

3. CONCLUSION 
 

The nearest neighbour search problem has major 

importance in many applications, including machine 

learning, document retrieval, data compression, bio-

informatics, and data analysis.  For that Use of large 

training sets is key to obtain good real-life performance 

from many computer vision methods. Today the Internet is 

a vast resource for such training data but for large data sets 

the performance of the algorithms employed quickly 

becomes a key issue. Hence designing new algorithms and 

improvements to existing ones are needed. Variations of 

the k-d tree using non-axis-aligned partitioning hyper 

planes have shown trinary projection tree, but trinary 

projection tree are less efficient as compared to 

randomized k-d tree decomposition.Applying hashing 

technique in the implementation of nearest neighbour may 

certainly help in improving the results over K-d tree 

decomposition. 
 

REFERENCES 
 

[1]S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu, 

“An optimal algorithm for approximate nearest neighbor searching 
in fixed dimensions,” J. ACM, vol. 45, no. 6, pp. 891– 923, 1998. 

[2] C. Silpa-Anan and R. Hartley, “Optimised KD-trees for fast image 

descriptor matching,” in Proc. IEEE Conf. Comput. Vis. Pattern 
Recog., 2008, Pp.1–8. 

[3] A. Andoni and P. Indyk, “Near-optimal hashing algorithms for 

approximate nearest neighbour in high dimensions,” Commun. 
ACM, vol. 51, no. 1, pp. 117–122, 2008. 

[4]M. Muja and D.G. Lowe, “Fast approximate nearest neighbors with 

automatic algorithm configuration,” in Proc. Int. Conf. Computer 
Vis. Theory Appl., 2009, pp. 331–340. 

[5] Brian Kulis, Prateek Jain, and Kristen Grauman, “Fast Similarity 

Search for Learned Metrics”IEEE      Transaction on pattern 
analysis and machine intelligence vol. 31, no.12, December 2009. 

[6] Jingdong Wang, Naiyan Wang, You Jia, Jian Li, Gang Zeng, 

HongbinZha, , and Xian-Sheng Hua, “Trinary-Projection Trees for 
Approximate Nearest Neighbor Search”, IEEE, Transaction on 

pattern analysis and machine intelligence vol. 36, no. 2, February 

2014. 
[7] Jingdong Wang, Heng Tao Shen, Jingkuan Song, and JianqiuJi 

“Hashing for Similarity Search: A Survey”August 13, 2014. 

[8] Marius Muja and David G. Lowe, “Scalable Nearest Neighbour 
Algorithms for High Dimensional Data” IEEE Transaction on 

pattern analysis and machine intelligence, vol. 36, no. 11, 

November 2014. 
 

 

 


